3.2.11 \(\int \frac {a g+e x+f x^3-c g x^4}{(a+b x^2+c x^4)^{3/2}} \, dx\) [111]

Optimal. Leaf size=69 \[ \frac {g x}{\sqrt {a+b x^2+c x^4}}-\frac {b e-2 a f+(2 c e-b f) x^2}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}} \]

[Out]

g*x/(c*x^4+b*x^2+a)^(1/2)+(-b*e+2*a*f-(-b*f+2*c*e)*x^2)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {1687, 1602, 1261, 650} \begin {gather*} \frac {g x}{\sqrt {a+b x^2+c x^4}}-\frac {-2 a f+x^2 (2 c e-b f)+b e}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*g + e*x + f*x^3 - c*g*x^4)/(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

(g*x)/Sqrt[a + b*x^2 + c*x^4] - (b*e - 2*a*f + (2*c*e - b*f)*x^2)/((b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4])

Rule 650

Int[((d_.) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[-2*((b*d - 2*a*e + (2*c*
d - b*e)*x)/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2])), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] &&
NeQ[b^2 - 4*a*c, 0]

Rule 1261

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 1602

Int[(Pp_)*(Qq_)^(m_.), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[Coeff[Pp, x, p]*x^(p - q +
 1)*(Qq^(m + 1)/((p + m*q + 1)*Coeff[Qq, x, q])), x] /; NeQ[p + m*q + 1, 0] && EqQ[(p + m*q + 1)*Coeff[Qq, x,
q]*Pp, Coeff[Pp, x, p]*x^(p - q)*((p - q + 1)*Qq + (m + 1)*x*D[Qq, x])]] /; FreeQ[m, x] && PolyQ[Pp, x] && Pol
yQ[Qq, x] && NeQ[m, -1]

Rule 1687

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rubi steps

\begin {align*} \int \frac {a g+e x+f x^3-c g x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx &=\int \frac {x \left (e+f x^2\right )}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx+\int \frac {a g-c g x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx\\ &=\frac {g x}{\sqrt {a+b x^2+c x^4}}+\frac {1}{2} \text {Subst}\left (\int \frac {e+f x}{\left (a+b x+c x^2\right )^{3/2}} \, dx,x,x^2\right )\\ &=\frac {g x}{\sqrt {a+b x^2+c x^4}}-\frac {b e-2 a f+(2 c e-b f) x^2}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 10.12, size = 61, normalized size = 0.88 \begin {gather*} \frac {-b e+2 a f+b^2 g x-4 a c g x-2 c e x^2+b f x^2}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*g + e*x + f*x^3 - c*g*x^4)/(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

(-(b*e) + 2*a*f + b^2*g*x - 4*a*c*g*x - 2*c*e*x^2 + b*f*x^2)/((b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 2.
time = 0.05, size = 1012, normalized size = 14.67

method result size
gosper \(\frac {4 a c g x -b^{2} g x -b f \,x^{2}+2 c e \,x^{2}-2 f a +e b}{\sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (4 a c -b^{2}\right )}\) \(63\)
trager \(\frac {4 a c g x -b^{2} g x -b f \,x^{2}+2 c e \,x^{2}-2 f a +e b}{\sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (4 a c -b^{2}\right )}\) \(63\)
elliptic \(-\frac {b f \,x^{2}-2 c e \,x^{2}+2 f a -e b}{\sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (4 a c -b^{2}\right )}+\frac {g x}{\sqrt {c \,x^{4}+b \,x^{2}+a}}\) \(69\)
default \(-c g \left (-\frac {2 c \left (\frac {b \,x^{3}}{2 c \left (4 a c -b^{2}\right )}+\frac {a x}{c \left (4 a c -b^{2}\right )}\right )}{\sqrt {\left (x^{4}+\frac {b \,x^{2}}{c}+\frac {a}{c}\right ) c}}+\frac {a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\EllipticE \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\right )-\frac {f \left (b \,x^{2}+2 a \right )}{\sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (4 a c -b^{2}\right )}+a g \left (-\frac {2 c \left (\frac {b \,x^{3}}{2 a \left (4 a c -b^{2}\right )}-\frac {\left (2 a c -b^{2}\right ) x}{2 a \left (4 a c -b^{2}\right ) c}\right )}{\sqrt {\left (x^{4}+\frac {b \,x^{2}}{c}+\frac {a}{c}\right ) c}}+\frac {\left (\frac {1}{a}-\frac {2 a c -b^{2}}{a \left (4 a c -b^{2}\right )}\right ) \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b c \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\EllipticE \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\right )+\frac {e \left (2 c \,x^{2}+b \right )}{\sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (4 a c -b^{2}\right )}\) \(1012\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c*g*x^4+f*x^3+a*g+e*x)/(c*x^4+b*x^2+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-c*g*(-2*c*(1/2*b/c/(4*a*c-b^2)*x^3+a/c/(4*a*c-b^2)*x)/((x^4+b/c*x^2+a/c)*c)^(1/2)+1/2*a/(4*a*c-b^2)*2^(1/2)/(
(-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^
(1/2)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b
^2)^(1/2))/a/c)^(1/2))-1/2*b/(4*a*c-b^2)*a*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/
2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(Ellipt
icF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1
/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))))-f/(c*x^4+b*x^2
+a)^(1/2)*(b*x^2+2*a)/(4*a*c-b^2)+a*g*(-2*c*(1/2/a*b/(4*a*c-b^2)*x^3-1/2*(2*a*c-b^2)/a/(4*a*c-b^2)/c*x)/((x^4+
b/c*x^2+a/c)*c)^(1/2)+1/4*(1/a-(2*a*c-b^2)/a/(4*a*c-b^2))*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(
-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x
*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-1/2*b*c/(4*a*c-b^2)*
2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2)
)/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/
a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1
/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))))+e/(c*x^4+b*x^2+a)^(1/2)*(2*c*x^2+b)/(4*a*c-b^2)

________________________________________________________________________________________

Maxima [A]
time = 0.34, size = 94, normalized size = 1.36 \begin {gather*} \frac {\sqrt {c x^{4} + b x^{2} + a} {\left ({\left (b f - 2 \, c e\right )} x^{2} + 2 \, a f + {\left (b^{2} g - 4 \, a c g\right )} x - b e\right )}}{{\left (b^{2} c - 4 \, a c^{2}\right )} x^{4} + a b^{2} - 4 \, a^{2} c + {\left (b^{3} - 4 \, a b c\right )} x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*g*x^4+f*x^3+a*g+e*x)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

sqrt(c*x^4 + b*x^2 + a)*((b*f - 2*c*e)*x^2 + 2*a*f + (b^2*g - 4*a*c*g)*x - b*e)/((b^2*c - 4*a*c^2)*x^4 + a*b^2
 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)

________________________________________________________________________________________

Fricas [A]
time = 0.40, size = 92, normalized size = 1.33 \begin {gather*} \frac {\sqrt {c x^{4} + b x^{2} + a} {\left ({\left (b^{2} - 4 \, a c\right )} g x - {\left (2 \, c e - b f\right )} x^{2} - b e + 2 \, a f\right )}}{{\left (b^{2} c - 4 \, a c^{2}\right )} x^{4} + a b^{2} - 4 \, a^{2} c + {\left (b^{3} - 4 \, a b c\right )} x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*g*x^4+f*x^3+a*g+e*x)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

sqrt(c*x^4 + b*x^2 + a)*((b^2 - 4*a*c)*g*x - (2*c*e - b*f)*x^2 - b*e + 2*a*f)/((b^2*c - 4*a*c^2)*x^4 + a*b^2 -
 4*a^2*c + (b^3 - 4*a*b*c)*x^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \left (- \frac {a g}{a \sqrt {a + b x^{2} + c x^{4}} + b x^{2} \sqrt {a + b x^{2} + c x^{4}} + c x^{4} \sqrt {a + b x^{2} + c x^{4}}}\right )\, dx - \int \left (- \frac {e x}{a \sqrt {a + b x^{2} + c x^{4}} + b x^{2} \sqrt {a + b x^{2} + c x^{4}} + c x^{4} \sqrt {a + b x^{2} + c x^{4}}}\right )\, dx - \int \left (- \frac {f x^{3}}{a \sqrt {a + b x^{2} + c x^{4}} + b x^{2} \sqrt {a + b x^{2} + c x^{4}} + c x^{4} \sqrt {a + b x^{2} + c x^{4}}}\right )\, dx - \int \frac {c g x^{4}}{a \sqrt {a + b x^{2} + c x^{4}} + b x^{2} \sqrt {a + b x^{2} + c x^{4}} + c x^{4} \sqrt {a + b x^{2} + c x^{4}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*g*x**4+f*x**3+a*g+e*x)/(c*x**4+b*x**2+a)**(3/2),x)

[Out]

-Integral(-a*g/(a*sqrt(a + b*x**2 + c*x**4) + b*x**2*sqrt(a + b*x**2 + c*x**4) + c*x**4*sqrt(a + b*x**2 + c*x*
*4)), x) - Integral(-e*x/(a*sqrt(a + b*x**2 + c*x**4) + b*x**2*sqrt(a + b*x**2 + c*x**4) + c*x**4*sqrt(a + b*x
**2 + c*x**4)), x) - Integral(-f*x**3/(a*sqrt(a + b*x**2 + c*x**4) + b*x**2*sqrt(a + b*x**2 + c*x**4) + c*x**4
*sqrt(a + b*x**2 + c*x**4)), x) - Integral(c*g*x**4/(a*sqrt(a + b*x**2 + c*x**4) + b*x**2*sqrt(a + b*x**2 + c*
x**4) + c*x**4*sqrt(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 166 vs. \(2 (66) = 132\).
time = 4.48, size = 166, normalized size = 2.41 \begin {gather*} \frac {{\left (\frac {{\left (b^{3} f - 4 \, a b c f - 2 \, b^{2} c e + 8 \, a c^{2} e\right )} x}{b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}} + \frac {b^{4} g - 8 \, a b^{2} c g + 16 \, a^{2} c^{2} g}{b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}}\right )} x + \frac {2 \, a b^{2} f - 8 \, a^{2} c f - b^{3} e + 4 \, a b c e}{b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}}}{\sqrt {c x^{4} + b x^{2} + a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*g*x^4+f*x^3+a*g+e*x)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

(((b^3*f - 4*a*b*c*f - 2*b^2*c*e + 8*a*c^2*e)*x/(b^4 - 8*a*b^2*c + 16*a^2*c^2) + (b^4*g - 8*a*b^2*c*g + 16*a^2
*c^2*g)/(b^4 - 8*a*b^2*c + 16*a^2*c^2))*x + (2*a*b^2*f - 8*a^2*c*f - b^3*e + 4*a*b*c*e)/(b^4 - 8*a*b^2*c + 16*
a^2*c^2))/sqrt(c*x^4 + b*x^2 + a)

________________________________________________________________________________________

Mupad [B]
time = 0.98, size = 62, normalized size = 0.90 \begin {gather*} -\frac {g\,b^2\,x+f\,b\,x^2-e\,b-2\,c\,e\,x^2-4\,a\,c\,g\,x+2\,a\,f}{\left (4\,a\,c-b^2\right )\,\sqrt {c\,x^4+b\,x^2+a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*g + e*x + f*x^3 - c*g*x^4)/(a + b*x^2 + c*x^4)^(3/2),x)

[Out]

-(2*a*f - b*e + b*f*x^2 - 2*c*e*x^2 + b^2*g*x - 4*a*c*g*x)/((4*a*c - b^2)*(a + b*x^2 + c*x^4)^(1/2))

________________________________________________________________________________________